Received: August 29, 1985; accepted: September 16, 1985

PRELIMINARY NOTE

The Nitrene OsF₅(NC1)

R. W. COCKMAN and R. D. PEACOCK

Department of Chemistry, University of Leicester, Leicester LE1 7RH (U.K.)

SUMMARY

Reaction between OsF_6 and $(CH_3)_3Si(NCO)$, followed by oxidation of the product with ClF_3 , yields a mixture which contains $OsF_5(NC1)$. The nitrene is purified by recrystallisation from anhydrous HF.

Recently the nitride fluoride ReNF_4 and the nitrene derivatives $\text{ReF}_5(\text{NF})$ and $\text{ReF}_5(\text{NC1})$ were prepared and characterised in this laboratory [1]. Here we report the synthesis of a novel nitrene fluoride of osmium, $\text{OsF}_5(\text{NC1})$.

Osmium hexafluoride reacts with $(CH_3)_3$ Si(NCO) in Genetron 113 solution to give a dark oily product which solidifies on standing to a brown solid which is believed on i.r. evidence to contain isocyanato-derivatives such as OsF_5 (NCO) or OsF_4 (NCO). Treatment with successive small quantities of gaseous ClF_3 (\sim lOOmm) (CAUTION) leads to a brown solid which dissolves in excess of liquid ClF_3 to give a red solution from which a red-brown solid is isolated after evaporation of the solvent. After warming to 85° under a dynamic vacuum a small proportion of a yellow sublimate appears; the remaining puce coloured solid has a prominent i.r. peak at 1215 cm⁻¹, and 0022-1139/86/\$3.50 © Elsevier Sequoia/Printed in The Netherlands⁻ shows a mass spectral pattern which includes the ions OSF_4N^+ and OSF_3N^+ as well as Cl_2^+ . The puce solid dissolves in anhydrous HF and evaporation of the solution yields white, orange and red crystals. The mass spectrum of the red crystals includes OSO_3N^+ and OSO_2N^+ peaks, and, interestingly a strong peak at 69, which may be assigned to CF_3^+ ; the IR spectrum shows frequencies at 1301(m), 1290(w) (CF) 1210(m), (OS-N), and others associated with Os-O and Os-F. This product has not yet been characterised. The white crystals have been identified as the new 'nitrene' $OSF_5(NC1)$, corresponding to the known $ReF_5(NC1)$ [1].

 $OsF_5(NC1)$ (mp. 170-4°) is a white, air sensitive solid which gives a mass spectrum showing the parent ion $OsF_5(NC1)^+$, the ions $OsF_4(NC1)^+$, $OsF_3(NC1)^+$, OsF_nN (n = 4,3,2), and OsF_n (n = 4 to 0). In addition strong peaks appear characteristic of Cl_2 , as well as OsO_n (n = 4 to 0) from hydrolysis in the mass spectrometer. The IR spectrum shows frequencies at 1215 cm⁻¹(m) (Os-N), and at 660(vs) (Os-F), 625 (vs,br) (Os-F), 495(w) (?N-C1) and 425(w). $OsF_5(NC1)$ is much less volatile than $ReF_5(NC1)$, but the most striking feature is the absence of a strong colour, in contrast to the purple Re compound. The compound appears to be stable to at least the melting point.

We are grateful to the SERC for financial support.

1 J. Fawcett, R. D. Peacock and D. R. Russell, J. Chem. Soc. (Chem. Commun.), (1982) 958.